
Programming Chemical
Reaction Networks
in Kaemika

Luca Cardelli, University of Oxford
Future of Computing
2019-07-04 Porto

2019-07-10Luca Cardelli 2

Install Kaemika
• Android version:

• Search "Kaemika" in the Play Store
• https://play.google.com/store/apps/details?id=co

m.kaemika.Kaemika

• Windows version (Dropbox): (runs without installation)
• Download & Unzip:

https://www.dropbox.com
/s/qxity2e9hw4fw5c
/Release.zip

• Run Release\KaemikaWPF.exe

• Windows version (Github, probably need account):
• https://github.com/luca-cardelli/KaemikaXM
• Download & Unzip
• Run ...\KaemikaXM-master\KaemikaWPF\bin\

Release\KaemikaWPF.exe

2019-07-10Luca Cardelli 3

Infinite Loop #1
• The first ever interesting "chemical algorithm"

that had nothing to do with actual chemicals

• First theoretical proof of oscillation, 1920 [Lotka]
• First experimental (accidental) chemical oscillator, 1921 [Bray]
• Ignored until the BZ reaction (accidental) discovery, 1958 [Belousov–Zhabotinsky]
• First non-accidentally-discovered chemical oscillator, 1981 [De Kepper]
• First protein/ATP-only oscillator, 2005 [Nakajima et al.]
• First DNA-only oscillator, 2017 [Srinivas et al.] (a version of Lotka's)

x1 -> x1 + x1 {1} // prey reproduces
x1 + x2 -> x2 + x2 {1} // predator eats prey
x2 -> # {1} // predator dies

2019-07-10Luca Cardelli 4

Lotka Volterra
• Try removing the prey (x1) (set prey reproduction rate, reaction #1, to 0)
• Try removing the predators (x2) (set predation rate, reaction #2, to 0)
• Try making predators immortal (set predator dieout rate, reaction #3, to 0)
• Try doubling the predation rate (prey go down, but predators too!)
• Try doubling the prey reproduction rate (prey go up, but predators go up more!)

2019-07-10Luca Cardelli 5

Interaction (Android)

Splash! Tutorial Examples
and Docs

Add new

Current model

Edit
tutorials

Clipboard
paste/copy

General output

Graph
outputs

Text
outputs

Export text
or GraphViz

Text size Play ->

..and export

Reaction and
protocol
graphs

Hybrid system
kinetics

Chart output

PlayStop

Solvers

..and noise/LNARotate

User files

Fano
factor

stdev

2019-07-10Luca Cardelli 6

Interaction (Windows)
tutorial examples

and docs
import/export
your models

special
chars

start/stop
simulations

stochastic
options

less/more
text output

legend

other outputs:
export to tools

export to GraphViz
analyze model

copy text ouput

control
legend

main editing area

text output

graph output

control model
parameters

graph
snapshot

control
graph

data tooltips

2019-07-10Luca Cardelli 7

PID Controller

2019-07-10Luca Cardelli 8

MATLAB YouTube Video
https://www.youtube.com/watch?v=wkfEZmsQqiA

On/Off
Control:

Proportional
Control:

Propeller speed = Error * Gain
hovering speed => Error =/= 0

2019-07-10Luca Cardelli 9

MATLAB YouTube Video

Proportional
+Integral
Control:

removes the steady state
error (eventually)

but may overshoot:

2019-07-10Luca Cardelli 10

MATLAB YouTube Video

Proportional
+Integral
+Differential
Control:

if the error is decreasing fast
a large negative derivative
will be added

slowing down the ascent
and preventing overshooting

PID: present + past + future

2019-07-10Luca Cardelli 11

Positive Arithmetic
// add
species a @ 2 M
species b @ 3 M
species c @ 0 M
report a, b, c

a -> c
b -> c

equilibrate for 5

// copy and add
species a @ 2 M
species b @ 3 M
species c @ 0 M
report a, b, c

a -> a + c
b -> b + c
c -> #

equilibrate for 5

// copy
species a @ 2 M
species a' @ 0 M
report a, a'

a -> a + a'
a' -> #

equilibrate for 5

∂a = 0
∂b = 0
∂c = a + b - c

∂c = 0 => c = a + b

∂a = 0
∂a' = a - a'

∂a'= 0 => a' = a

Try increasing the a level
How much longer will it
take to reach steady state?

2019-07-10Luca Cardelli 12

Positive Arithmetic

//mult
species a @ 2 M
species b @ 3 M
species c @ 0 M
report a, b, c

a + b -> a + b + c
c -> #

equilibrate for 5

//div
species a @ 2 M
species b @ 3 M
species c @ 0 M
report a, b, c

a -> a + c
b + c -> b

equilibrate for 5

∂a = 0
∂b = 0
∂c = a * b - c

∂c = 0 => c = a * b

∂a = 0
∂b = 0
∂c = a - b * c

∂c = 0 => c = a / b
(b = 0 => c -> )

2019-07-10Luca Cardelli 13

Differential Signals
But ERRORS in the PID controller
can be positive or negative,
while concentrations can only be positive.

Solution: encode an integer number
as the difference of two
natural numbers (concentations)

// a = a⁺ - a⁻

species a⁺ @ 1 M
species a⁻ @ 3 M
report a⁺, a⁻
report a⁺ - a⁻

-> a⁺
-> a⁻

// normalization:
// a⁺ + a⁻ -> #

equilibrate for 5

Without normalization With normalization
(they keep growing) (we are still producing a , so it does not go to zero, but it stabilizes)

2019-07-10Luca Cardelli 14

Addition of Differential Signals
species a⁺ @ 2 M
species a⁻ @ 0 M

species b⁺ @ 0 M
species b⁻ @ 3 M

species c⁺ @ 0 M
species c⁻ @ 0 M

report a⁺ - a⁻, b⁺ - b⁻, c⁺ - c⁻

a⁺ -> c⁺
b⁺ -> c⁺

a⁻ -> c⁻
b⁻ -> c⁻

equilibrate for 5

a + b = (a⁺ - a⁻) + (b⁺ - b⁻)
= (a⁺ + b⁺) - (a⁻ + b⁻)
= c⁺ - c⁻
= c

2019-07-10Luca Cardelli 15

Subtraction of Differential Signals
species a⁺ @ 2 M
species a⁻ @ 0 M

species b⁺ @ 0 M
species b⁻ @ 3 M

species c⁺ @ 0 M
species c⁻ @ 0 M

report a⁺ - a⁻, b⁺ - b⁻, c⁺ - c⁻

a⁺ -> c⁺
b⁻ -> c⁺

a⁻ -> c⁻
b⁺ -> c⁻

equilibrate for 5

a - b = (a⁺ - a⁻) - (b⁺ - b⁻)
= (a⁺ + b⁻) - (a⁻ + b⁺)
= c⁺ - c⁻
= c

2019-07-10Luca Cardelli 16

Multiplication of Differential Signals
species a⁺ @ 2 M
species a⁻ @ 0 M

species b⁺ @ 0 M
species b⁻ @ 3 M

species c⁺ @ 0 M
species c⁻ @ 0 M

...

equilibrate for 5

a * b = (a⁺ - a⁻) * (b⁺ - b⁻)
= a⁺*b⁺ - a⁺*b⁻ - a⁻*b⁺ + a⁻*b⁻
= (a⁺*b⁺ + a⁻*b⁻) - (a⁺*b⁻ + a⁻*b⁺)
= c⁺ - c⁻
= c

At this point we would want to use some
"subroutines", since se have already seen
how to multiply and add positive quantities
and we need to do a whole bunch of those.

Fortunately we will not need this multiplication
for the PID controller, but we will still need
to modularize reactions.

2019-07-10Luca Cardelli 17

Modular Chemical Programs
function signal(number n) {
define

species n⁺ @ pos(n) M
species n⁻ @ pos(-n) M
n⁺ + n⁻ -> #

yield
[n⁺, n⁻]

}

function copy([species a⁺ a⁻]) {
define

[species b⁺ b⁻] = signal(0)
a⁺ -> a⁺ + b⁺; b⁺ -> #
a⁻ -> a⁻ + b⁻; b⁻ -> #

yield
[b⁺, b⁻]

}

function add([species a⁺ a⁻], [species b⁺ b⁻]) {
define

[species c⁺ c⁻] = signal(0)
a⁺ -> c⁺; b⁺ -> c⁺
a⁻ -> c⁻; b⁻ -> c⁻

yield
[c⁺, c⁻]

}

function sub([species a⁺ a⁻], [species b⁺ b⁻]) {
define

[species c⁺ c⁻] = signal(0)
a⁺ -> c⁺; b⁻ -> c⁺
a⁻ -> c⁻; b⁺ -> c⁻

yield
[c⁺, c⁻]

}

2019-07-10Luca Cardelli 18

Modular Chemical Programs

list a = signal(3) // [a⁺, a⁻]
list b = signal(-2) // [b⁺, b⁻]
list d = copy(a) // [d⁺, d⁻]
list c = add(a, b) // [c⁺, c⁻]
list e = sub(d, c) // [e⁺, e⁻]

report a(0) - a(1) as "a"
report b(0) - b(1) as "b"
report c(0) - c(1) as "c"
report d(0) - d(1) as "d"
report e(0) - e(1) as "e"

equilibrate for 5

2019-07-10Luca Cardelli 19

PID Controller

2019-07-10Luca Cardelli 20

Proportional Block
• Amplify the error E = (E - E) into P = (P - P) by a tunable "gain" Kp
//-------------- Proportional Block ---------------
network PBlock (species E⁺ E⁻ P⁺ P⁻, number Kp) {

E⁺ -> E⁺ + P⁺ {precision * Kp}
E⁻ -> E⁻ + P⁻ {precision * Kp}
P⁺ -> # {precision}
P⁻ -> # {precision}
P⁻ + P⁺ -> # {precision}

}

You may recognize the pattern:
E is copied into P (reaction 1 & 3)
E is copied into P (reaction 2 & 4)
P -P is normalized (reaction 5)

But the "copying" adds an amplification Kp
(rates of 1 & 2)

2019-07-10Luca Cardelli 21

Unit Testing the P-Block
• Change Kp
• Change the "DSignal" function

2019-07-10Luca Cardelli 22

Integral Block
• Integrate the error E = (E - E) into I = (I - I) with a tunable "gain" Ki
//------------------- Integral Block --------------------
network IBlock (species E⁺ E⁻ I⁺ I⁻, number Ki) {

E⁺ -> E⁺ + I⁺ {Ki}
E⁻ -> E⁻ + I⁻ {Ki}
I⁻ + I⁺ -> # {precision}

}

This is even easier:
E accumulates into I (reaction 1)
E accumulates into I (reaction 2)
I -I is normalized (reaction 3)

But the "accumulation" adds an amplification Ki
(rates of 1 & 2)

2019-07-10Luca Cardelli 23

Unit Testing the I-Block
• Change Ki
• Change the "DSignal" function

2019-07-10Luca Cardelli 24

Derivative Block
• Differentiate the error E = (E - E) into D = (D - D) with a tunable "gain" Kd

//------------------ Derivative Block -------------------
network DBlock(species E⁺ E⁻ D⁺ D⁻, number Kd) {

species A⁺, A⁻ @ 0M // D block auxiliary species
E⁺->E⁺ + A⁺ {precision}
A⁺ -># {precision}
E⁻ ->E⁻ + A⁻ {precision}
A⁻ -># {precision}
E⁺ ->E⁺ + D⁺ {precision*precision*Kd}
A⁻ ->A⁻ + D⁺ {precision*precision*Kd}
D⁺ -> # {precision}
E⁻ -> E⁻ + D⁻ {precision*precision*Kd}
A⁺ -> A⁺ + D⁻ {precision*precision*Kd}
D⁻ -> # {precision}
D⁺ + D⁻ -> # {precision}

}

• E⁺,E⁻ is copied into A⁺,A⁻
• E⁺,E⁻ is also copied into D⁺,D⁻
• A⁺,A⁻ is swap-copied (negated-summed) into D⁺,D⁻
• So D is the difference of two copies of E

taken at different times t and t+s
(because E->D is faster than E->A->D)

• Appropriate rates ensure that
D(t) = (E(t)-E(t-s))/s

which converges to the deriviative for s->0
(where s is a rate)

2019-07-10Luca Cardelli 25

Derivative Block
• Informal argument

• ∂A⁺ = sE⁺ - sA⁺
• ∂A⁻ = sE⁻ - sA⁻
• ∂D⁺ = ks2E⁺ + ks2A⁻ - sD⁺ - sD⁺D⁻
• ∂D⁻ = ks2E⁻ + ks2A⁺ - sD⁻ - sD⁺D⁻

• ∂(D⁺-D⁻) = ks(sE⁺-sE⁻) + ks(sA⁻-sA⁺) - s(D⁺-D⁻)
• ∂(D⁺-D⁻) = ks(sE⁺-sA⁺) - ks(sE⁻-sA⁻) - s(D⁺-D⁻)
• ∂(D⁺-D⁻) = ks∂(A⁺ - A⁻) - s(D⁺-D⁻)

• at "steady state" (when ∂A⁺ = ∂A⁻ = ∂(D⁺-D⁻) = 0)
• A⁺ = E⁺
• A⁻ = E⁻
• D⁺ - D⁻ = k∂(E⁺ - E⁻)

• (but ∂(D⁺-D⁻) may never reach steady state, so this needs a more formal argument)

//------------------ Derivative Block -------------------
network DBlock(species E⁺ E⁻ D⁺ D⁻, number Kd) {

species A⁺, A⁻ @ 0M // D block auxiliary species
E⁺->E⁺ + A⁺ {s}
A⁺ -># {s}
E⁻ ->E⁻ + A⁻ {s}
A⁻ -># {s}
E⁺ ->E⁺ + D⁺ {s*s*k}
A⁻ ->A⁻ + D⁺ {s*s*k}
D⁺ -> # {s}
E⁻ -> E⁻ + D⁻ {s*s*k}
A⁺ -> A⁺ + D⁻ {s*s*k}
D⁻ -> # {s}
D⁺ + D⁻ -> # {s}

}

2019-07-10Luca Cardelli 26

Unit Testing the D-Block
• Increase the precision (say, to 100) for better fidelity
• Change the function to differentiate

• 2*time, whose derivative is constant 2
• time^2, whose derivative is 2 (slope 2)
• exp(time), whose derivative is exp(time)! (STOP it before it crashes!)
• the second derivative of sin(time) by using two D-Blocks

2019-07-10Luca Cardelli 27

Finally, the whole PID controller
//======================================
// PID Controller Block
//======================================

network PIDController(
species R⁺ R⁻,
number Kp Ki Kd,
network Plant){

species E⁺,E⁻,P⁺,P⁻,I⁺,I⁻, D⁺,D⁻,U⁺,U⁻,Y,Y⁺,Y⁻ @ 0M

PBlock(E⁺, E⁻, P⁺, P⁻, Kp)
IBlock(E⁺, E⁻, I⁺, I⁻, Ki)
DBlock(E⁺, E⁻, D⁺, D⁻, Kd)
SumBloc(P⁺, P⁻, I⁺, I⁻, D⁺, D⁻, U⁺, U⁻)
Plant(U⁺, U⁻, Y)
DualRail(Y, Y⁺, Y⁻)
SubBlock(R⁺, R⁻, Y⁺, Y⁻, E⁺, E⁻)

}

2019-07-10Luca Cardelli 28

The Trivial Plant

• U⁺ increases the output Y
• U⁻ decreases the output Y
• However it is not symmetrical:

∂Y = U⁺ - Y * U⁻
so, although we can control the plant, we do not have direct control of Y
and the control task is still mildly non-trivial

network Plant(species U⁺ U⁻ Y) {
U⁺ -> U⁺ + Y
U⁻ + Y -> U⁻

}

2019-07-10Luca Cardelli 29

Testing the Controller
• Oscillating reference signal
• Just click the Play button a few times

The parameters Kp, Ki, Kd are drawn from uniform random distributions.
They can be individually frozen by checking the checkboxes

• Try to find and freeze some good parameters

2019-07-10Luca Cardelli 30

Testing the Controller
• Constant reference signal
• This is easier

Try changing the parameters by hand in this line (these are already pretty good):

• Likely, you will need a different set of parameters here.

PIDController(R⁺,R⁻, Y, 0.1, 0.02, 0.02, Plant)

2019-07-10Luca Cardelli 31

Biochemical Plant
network Plant(species U⁺ U⁻ Protein) {

species mRNA @ 0 M
species microRNA @ 0 M
U⁺ -> U⁺ + mRNA
U⁻ -> U⁻ + microRNA

mRNA -> mRNA + Protein
Protein-> #
mRNA + microRNA -> #

}

// OSCILLATING REFERENCE
number Kp =? uniform(0,2)
number Ki =? uniform(0,2)
number Kd =? uniform(0,2)

DSignal(R⁺,R⁻, fun(){1.5+sin(0.25*time)})
PIDController(R⁺,R⁻, Y, Kp, Ki, Kd, Plant)

• Random sampling: Not so easy!

2019-07-10Luca Cardelli 32

Biochemical Plant - my PD strategy
• 1. Adjust Kp until the amplitudes match

(with Ki, Kd zero)

• 2. Adjusting Ki does not seem to help at all,
leave it at zero

• 3. Adjusting Kd gives better results
to put the oscillation in phase

2019-07-10Luca Cardelli 33

Automatic Parameter Search
• Kaemika has a multi-dimensional gradient descent search

(the "argmin" primitive, implementing the BFGS algorithm)
• Gradients (partial derivatives) must be provided for Kp, Ki, Kd;

see the "PIDController Optimization" tutorial about how to do that

Was asked to zero-out error already at time 20.
So it overshoots a bit to get there in time.
It is using each of P, I, and D.

Found (local) minimum in only 5 tries.

2019-07-10Luca Cardelli 34

Chemical Perceptron

species a @ 0.01 M
number bias = 0.3
number pw = 1.1
number nw = 0.9
species exc @ 1.5 M
species inh @ 0.4 M

a + a -> a {1}
a -> a + a {bias}
exc + a -> a + a + exc {pw}
inh + a -> inh {nw}

equilibrate for 40

2019-07-10Luca Cardelli 35

Conclusions
• Programming chemistry is fun. But it is no fun without modularization!

Chemical reactions provide a nice almost-high-level language if
properly modularized.

• There will always be "cheaper" ways of implementing those programs
by direct "low-level chemical hacking" (c.f. trade-off between high-level
and assembly languages).

• But a compiler could optimize higher-level programs for specific
architectures (e.g. DNA strand displacement).

• There are already higher-level languages. Synthetic biology "programs"
(gene assemblies) can be compiled from libraries of standard parts into
molecules (plasmids). Chemical reactions there figure prominently as
an "intermediate language" between gene specification and analysis.

• Control of biochemical "plants" is a major issue in synthetic biology.

